Nuprl Definition : bilinear_p
13,42
postcript
pdf
basic
IsBilinear(
A
;
B
;
C
;
+a
;
+b
;
+c
;
f
)
== (
a1
,
a2
:
A
,
b
:
B
. ((
a1
+a
a2
)
f
b
) = ((
a1
f
b
)
+c
(
a2
f
b
)))
==
& (
a
:
A
,
b1
,
b2
:
B
. (
a
f
(
b1
+b
b2
)) = ((
a
f
b1
)
+c
(
a
f
b2
)))
latex
clarification:
basic
IsBilinear(
A
;
B
;
C
;
+a
;
+b
;
+c
;
f
)
== (
a1
:
A
,
a2
:
A
,
b
:
B
. ((
a1
+a
a2
)
f
b
) = ((
a1
f
b
)
+c
(
a2
f
b
))
C
)
==
& (
a
:
A
.
b1
:
B
,
b2
:
B
. (
a
f
(
b1
+b
b2
)) = ((
a
f
b1
)
+c
(
a
f
b2
))
C
)
latex
Up
gen
algebra
1
Wellformedness Lemmas
bilinear
p
wf
Definitions
P
&
Q
,
x
:
A
.
B
(
x
)
,
x
f
y
origin